A population of red candidate massive galaxies ~600 Myr after the Big Bang (2024)

  • Glazebrook, K. et al. A massive, quiescent galaxy at a redshift of 3.717. Nature 544, 71–74 (2017).

    Article ADS CAS PubMed Google Scholar

  • Riechers, D. A. et al. Rise of the Titans: gas excitation and feedback in a binary hyperluminous dusty starburst galaxy at z ~ 6. Astrophys. J. 907, 62 (2021).

    Article ADS CAS Google Scholar

  • Stefanon, M. et al. Galaxy stellar mass functions from z ~ 10 to z ~ 6 using the deepest Spitzer/infrared array camera data: no significant evolution in the stellar-to-halo mass ratio of galaxies in the first gigayear of cosmic time. Astrophys. J. 922, 29 (2021).

    Article ADS CAS Google Scholar

  • Brammer, G. & Matharu, J. gbrammer/grizli: Release 2021. Zenodo https://zenodo.org/record/7767790#.ZCRGM-zMJxY (2021).

  • Schaerer, D. & de Barros, S. The impact of nebular emission on the ages of z ≈ 6 galaxies. Astron. Astrophys. 502, 423–426 (2009).

    Article ADS CAS Google Scholar

  • Shim, H. et al. z ~ 4 Hα emitters in the great observatories origins deep survey: tracing the dominant mode for growth of galaxies. Astrophys. J. 738, 69 (2011).

    Article ADS Google Scholar

  • Labbé, I. et al. The spectral energy distributions of z ~ 8 galaxies from the IRAC ultra deep fields: emission lines, stellar masses, and specific star formation rates at 650 Myr. Astrophys. J. 777, L19 (2013).

    Article ADS Google Scholar

  • Stark, D. P. et al. Keck spectroscopy of 3. Astrophys. J. 763, 129 (2013).

    Article ADS Google Scholar

  • Smit, R. et al. Evidence for ubiquitous high-equivalent-width nebular emission in z ~ 7 galaxies: toward a clean measurement of the specific star-formation rate using a sample of bright, magnified galaxies. Astrophys. J. 784, 58 (2014).

    Article ADS Google Scholar

  • Smit, R. et al. High-precision photometric redshifts from Spitzer/IRAC: extreme [3.6]–[4.5] colors identify galaxies in the redshift range z ~ 6.6–6.9. Astrophys. J. 801, 122 (2015).

    Article ADS Google Scholar

  • Faisst, A. L. et al. A coherent study of emission lines from broadband photometry: specific star formation rates and [O III]/Hβ ratio at 3 < z < 6. Astrophys. J. 821, 122 (2016).

    Article ADS Google Scholar

  • De Barros, S. et al. The GREATS Hβ + [O III] luminosity function and galaxy properties at z ~ 8: walking the way of JWST. Mon. Not. R. Astron. Soc. 489, 2355–2366 (2019).

    Article ADS Google Scholar

  • Naidu, R. P. et al. Two remarkably luminous galaxy candidates at z ≈ 10–12 revealed by JWST. Astrophys. J. 940, L14 (2022).

    Article ADS Google Scholar

  • Endsley, R. et al. A JWST/NIRCam study of key contributors to reionization: the star-forming and ionizing properties of UV-faint z ~ 7–8 galaxies. Preprint at https://arxiv.org/abs/2208.14999 (2022).

  • Stefanon, M. et al. Blue rest-frame UV-optical colors in z~8 galaxies from GREATS: very young stellar populations at 650 Myr of cosmic time. Astrophys. J. 927, 48 (2022).

    Article ADS Google Scholar

  • Brammer, G. B., van Dokkum, P. G. & Coppi, P. EAZY: a fast, public photometric redshift code. Astrophys. J. 686, 1503–1513 (2008).

    Article ADS Google Scholar

  • Leja, J., Johnson, B. D., Conroy, C., van Dokkum, P. G. & Byler, N. Deriving physical properties from broadband photometry with Prospector: description of the model and a demonstration of its accuracy using 129 galaxies in the local universe. Astrophys. J. 837, 170 (2017).

    Article ADS Google Scholar

  • Smit, R. et al. Inferred Hα flux as a star formation rate indicator at z ~ 4–5: implications for dust properties, burstiness, and the z = 4–8 star formation rate functions. Astrophys. J. 833, 254 (2016).

    Article ADS Google Scholar

  • Barro, G. et al. CANDELS: the progenitors of compact quiescent galaxies at z ~ 2. Astrophys. J. 765, 104 (2013).

    Article ADS Google Scholar

  • Roberts-Borsani, G. et al. Interpreting the Spitzer/IRAC colours of 7 ≤ z ≤ 9 galaxies: distinguishing between line emission and starlight using ALMA. Astrophys. J. 497, 3440 (2020).

    CAS Google Scholar

  • Laporte, N. et al. Probing cosmic dawn: ages and star formation histories of candidate z ≥ 9 galaxies. Mon. Not. R. Astron. Soc. 505, 3336–3346 (2021).

    Article ADS Google Scholar

  • Topping, M. W. et al. The ALMA REBELS Survey: specific star formation rates in the reionization era. Mon. Not. R. Astron. Soc. 516, 975–991 (2022).

  • Whitler, L. et al. Star formation histories of UV-luminous galaxies at z 6.8: implications for stellar mass assembly at early cosmic times. Mon. Not. R. Astron. Soc. 519, 5859–5881 (2023).

  • Hashimoto, T. et al. The onset of star formation 250 million years after the Big Bang. Nature 557, 392 (2018).

    Article ADS CAS PubMed Google Scholar

  • Roberts-Borsani, G. et al. Improving z 7–11 galaxy property estimates with JWST/NIRCam medium-band photometry. Astrophys. J. 910, 86 (2021).

    Article ADS CAS Google Scholar

  • Duncan, K. et al. The mass evolution of the first galaxies: stellar mass functions and star formation rates at 4 < z < 7 in the CANDELS GOODS-South field. Mon. Not. R. Astron. Soc. 444, 2960–2984 (2014).

    Article ADS Google Scholar

  • Davidzon, I. et al. The COSMOS2015 galaxy stellar mass function: thirteen billion years of stellar mass assembly in ten snapshots. Astron. Astrophys. 605, A70 (2017).

    Article Google Scholar

  • Song, M. et al. The evolution of the galaxy stellar mass function at z = 4–8: a steepening low-mass-end slope with increasing redshift. Astrophys. J. 825, 5 (2016).

    Article ADS Google Scholar

  • Roberts-Borsani, G. W. et al. z 7 Galaxies with red spitzer/IRAC [3.6]–[4.5] colors in the full CANDELS data set: the brightest-known galaxies at z ~ 7–9 and a probable spectroscopic confirmation at z = 7.48. Astrophys. J. 823, 143 (2016).

  • van Dokkum, P. G. et al. Dense cores in galaxies out to z = 2.5 in SDSS, UltraVISTA, and the five 3D-HST/CANDELS fields. Astrophys. J. 791, 45 (2014).

    Article ADS Google Scholar

  • Boylan-Kolchin, M. Stress testing ΛCDM with high-redshift galaxy candidates. Preprint at https://arxiv.org/abs/2208.01611 (2022).

  • Menci, N. et al. High-redshift galaxies from early JWST observations: constraints on dark energy models. Astrophys. J. 938, L5 (2022).

    Article ADS Google Scholar

  • Finkelstein S. et al. CEERS key paper I: an early look into the first 500 Myr of galaxy formation with JWST. Preprint at https://arxiv.org/abs/2211.05792 (2022).

  • Astropy Collaboration. The Astropy Project: sustaining and growing a community-oriented open-source project and the latest major release (v5.0) of the core package. Astrophys. J. 935, 167 (2022).

    Article ADS Google Scholar

  • Treu, T. et al. The initial mass function of early-type galaxies. Astrophys. J. 709, 1195 (2010).

    Article ADS Google Scholar

  • Bradley, L. et al. astropy/photutils: 1.5.0. Zenodo https://doi.org/10.5281/zenodo.6825092 (2022).

  • Boyer, M. L. et al. The JWST resolved stellar populations early release science program I.: NIRCam flux calibration. Preprint at https://arxiv.org/abs/2209.03348 (2022).

  • Nardiello D. et al. Photometry and astrometry with JWST–I. NIRCam point spread functions and the first JWST colour-magnitude diagrams of a globular cluster. Preprint at https://arxiv.org/abs/2209.06547 (2022).

  • Skelton, R. E. et al. 3D-HST WFC3-selected photometric catalogs in the five CANDELS/3D-HST fields: photometry, photometric redshifts, and stellar masses. Astrophys. J.Suppl. Ser.214, 24 (2014).

  • Kriek, M. et al. The MOSFIRE Deep Evolution Field (MOSDEF) survey: rest-frame optical spectroscopy for ~1500 H- selected galaxies at 1.37 < z < 3.8. Astrophys. J.Suppl. Ser.218, 15 (2015).

  • Zitrin, A. et al. Lyman-α emission from a luminous z = 8.68 galaxy: implications for galaxies as tracers of cosmic reionization. Astrophys. J. 810, L12 (2015).

    Article ADS Google Scholar

  • Salpeter, E. The luminosity function and stellar evolution. Astrophys. J. 121, 161 (1955).

  • Cappellari, M. et al. Systematic variation of the stellar initial mass function in early-type galaxies. Nature 544, 485–488 (2012).

    Article ADS Google Scholar

  • Conroy, C. & van Dokkum, P. The stellar initial mass function in early-type galaxies from absorption line spectroscopy. II. Results. Astrophys. J. 760, 71 (2012).

    Article ADS Google Scholar

  • van Dokkum, P. et al. The stellar initial mass function in early-type galaxies from absorption line spectroscopy. III. Radial gradients. Astrophys. J. 841, 68 (2017).

    Article ADS Google Scholar

  • Schaerer, D. et al. First look with JWST spectroscopy: resemblance among z 8 galaxies and local analogs. Astron. Astrophys. 665, L4 (2022).

    Article ADS Google Scholar

  • Johnson, B. D., Leja, J., Conroy, C. & Speagle, J. S. Stellar population inference with prospector. Astrophys. J.S. 254, 22 (2021).

    Article ADS CAS Google Scholar

  • Leja, J. et al. An older, more quiescent universe from panchromatic SED fitting of the 3D-HST survey. Astrophys. J. 877, 140 (2019).

    Article ADS CAS Google Scholar

  • Choi, J. et al. Mesa isochrones and stellar tracks (MIST). I. Solar-scaled models. Astrophys. J. 823, 102 (2016).

    Article ADS Google Scholar

  • Dotter, A. MESA isochrones and stellar tracks (MIST) 0: methods for the construction of stellar isochrones. Astrophys. J.Suppl. Ser.222, 8 (2016).

  • Conroy, C., Gunn, J. E. & White, M. The propagation of uncertainties in stellar population synthesis modeling. I. The relevance of uncertain aspects of stellar evolution and the initial mass function to the derived physical properties of galaxies. Astrophys. J. 699, 486 (2009).

    Article ADS Google Scholar

  • Conroy, C. & Gunn, J. E. The propagation of uncertainties in stellar population synthesis modeling. III. Model calibration, comparison, and evaluation. Astrophys. J. 712, 833 (2010).

    Article ADS CAS Google Scholar

  • Leja, J., Carnall, A. C., Johnson, B. D., Conroy, C. & Speagle, J. S. How to measure galaxy star formation histories. II. Nonparametric models. Astrophys. J. 876, 3 (2019).

    Article ADS CAS Google Scholar

  • Byler, N., Dalcanton, J. J., Conroy, C. & Johnson, B. D. Nebular continuum and line emission in stellar population synthesis models. Astrophys. J. 840, 44 (2017).

    Article ADS Google Scholar

  • Speagle, J. DYNESTY: a dynamic nested sampling package for estimating Bayesian posteriors and evidences. Mon. Not. R. Astron. Soc. 493, 3132–3158 (2020).

    Article ADS Google Scholar

  • Leja, J. et al. A new census of the 0.2. Astrophys. J. 893, 111 (2020).

    Article ADS CAS Google Scholar

  • Wang, B. et al. Inferring more from less: Prospector as a photometric redshift engine in the era of JWST. Astrophys. J. 944, L58 (2023).

  • Bell, E. & de Jong, R. Stellar mass-to-light ratios and the Tully-Fisher relation. Astrophys. J. 550, 1 (2001).

    Article Google Scholar

  • Carnall, A. et al. Inferring the star formation histories of massive quiescent galaxies with BAGPIPES: evidence for multiple quenching mechanisms. Mon. Not. R. Astron. Soc. 480, 4379–4401 (2018).

    Article ADS CAS Google Scholar

  • Bruzual, G. & Charlot, S. Stellar population synthesis at the resolution of 2003. Mon. Not. R. Astron. Soc. 344, 1000–1028 (2003).

    Article ADS Google Scholar

  • Feroz, F. et al. Importance nested sampling and the MultiNest algorithm. Open J. of Astrophys. 2, 10 (2019).

    Article ADS Google Scholar

  • Salim, S., Boquien, M. & Lee, J. C. Dust attenuation curves in the local universe: demographics and new laws for star-forming galaxies and high-redshift analogs. Astrophys. J. 859, 11 (2018).

  • Chevallard, J. et al. Insights into the content and spatial distribution of dust from the integrated spectral properties of galaxies. Mon. Not. R. Astron. Soc. 432, 2061 (2013).

    Article ADS Google Scholar

  • Steinhardt. C. L. et al. Templates for fitting photometry of ultra-high-redshift galaxies. Preprint at https://arxiv.org/abs/2208.07879 (2022).

  • Trenti, M. & Stiavelli, M. Cosmic variance and its effect on the luminosity function determination in deep high-z surveys. Astrophys. J. 676, 767–780 (2008).

    Article ADS Google Scholar

  • A population of red candidate massive galaxies ~600 Myr after the Big Bang (2024)
    Top Articles
    Latest Posts
    Article information

    Author: Neely Ledner

    Last Updated:

    Views: 5752

    Rating: 4.1 / 5 (62 voted)

    Reviews: 93% of readers found this page helpful

    Author information

    Name: Neely Ledner

    Birthday: 1998-06-09

    Address: 443 Barrows Terrace, New Jodyberg, CO 57462-5329

    Phone: +2433516856029

    Job: Central Legal Facilitator

    Hobby: Backpacking, Jogging, Magic, Driving, Macrame, Embroidery, Foraging

    Introduction: My name is Neely Ledner, I am a bright, determined, beautiful, adventurous, adventurous, spotless, calm person who loves writing and wants to share my knowledge and understanding with you.